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Abstract

Single-molecule techniques have transformed biological research by en-
abling direct observation and manipulation of individual molecules. These
methods overcome ensemble averaging inherent in bulk measurements and
facilitate studies under physiological stresses and out-of-equilibrium condi-
tions. They have provided valuable insights into diverse biological processes,
from stepping mechanisms of molecular motors to mechanical properties
of biomolecules to the dynamic strength of intermolecular bonds. Advances
in multiplexed and high-throughput single-molecule force spectroscopy
methods are improving throughput, capabilities, and accessibility. In this re-
view, we detail the evolution of multiplexed force spectroscopy technologies,
highlighting key advances in instrumentation, molecular engineering, and
analytical techniques. We discuss diverse applications spanning molecular
biophysics, biomolecular sensing, proteomics, and cellular mechanobiology.
Finally, we explore ongoing challenges and future opportunities and
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highlight how the impact of multiplexed single-molecule force spectroscopy can continue to
grow through further developments in novel instrumentation, chemical tools, and innovative

applications.
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INTRODUCTION

Single-molecule methods have significantly advanced biological research, providing insights free
from the ensemble averaging inherent in bulk measurements in areas ranging from protein fold-
ing (102) to molecular motor mechanics (113, 133) to nucleic acid processing (17, 33, 150). The
development of single-molecule approaches has been driven both by technological advances and
by compelling biological questions. Early breakthroughs were driven largely by novel instrumen-
tation that enabled direct observation of individual molecules and precise measurement of their
mechanical responses to forces. Force has served both as a mimic of physiological stresses and as
a probe to study interactions out of equilibrium.

Historically, several biological systems have underscored the importance of single-molecule
force spectroscopy techniques and have motivated further technological advances. Examples in-
clude the study of molecular motors (132), mechanical characterization of cellular materials (127),
and measurement of intermolecular bond strength (92). These studies fostered a virtuous cycle of
technology development, where each advance in spatial and temporal resolution, or in force and
torque precision, opened avenues to new biological questions, which in turn drove further tech-
nological innovation. For example, efforts to resolve and understand discrete stepping motions in
molecular motors spurred progress in measurement precision and force control (132, 139), while
early studies of DNA elasticity led to instrumentation capable of precisely controlling tension and
twist (127, 128).

Despite significant advances, force spectroscopy techniques typically face inherent through-
put constraints due to their single-molecule nature. This can limit their application in both basic
and clinical contexts, making it challenging to study large molecular libraries or analyze patient
samples. It has also been noted that while single-molecule studies have substantially advanced
our understanding of numerous biological mechanisms, broader biological discoveries—such as
identifying entirely new molecular processes—have been relatively less common, perhaps due
to limitations in experimental capabilities, accessibility, and throughput (140). While single-
molecule approaches hold considerable promise for detailed and comprehensive characterization
of biomolecular systems, including the capture of rare events or molecular populations and the
resolution of molecular heterogeneity, limited throughput remains a significant practical barrier
(Figure 1).

The recent development of multiplexed and high-throughput single-molecule force spec-
troscopy methods has begun addressing these challenges. Novel platforms like the centrifuge
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Overview of bulk, single-molecule, and multiplexed single-molecule methods. Bulk methods show average behavior that can be resolved
in single-molecule experiments. Multiplex methods offer additional efficiencies, throughput, and opportunities for resolving molecular
heterogeneity and rare events and populations. Abbreviations: AFS, acoustic force spectroscopy; CFM, centrifuge force microscope.

force microscope (CFM) and acoustic force spectroscopy (AFS) have emerged, uniquely combin-
ing high-throughput capabilities with sufficient precision for single-molecule analysis (50, 124,
146). Traditional methods, such as magnetic and optical tweezers, and flow-based methods have
also expanded their throughput (6, 106, 149). Together, these multiplexed methods are trans-
forming the range and application of single-molecule experiments, enabling large-scale screening,
robust statistical analysis of rare populations and events, and comprehensive characterization of
heterogeneous molecular populations (90).

In this review, we discuss the history and current landscape of multiplexed single-molecule
force spectroscopy, highlighting developments in instrumentation, molecular tools, advances in
surface chemistry, and analytical methods that have supported these technological improvements.
We also explore emerging applications enabled by high-throughput approaches in both basic bio-
physical research and translational and clinical applications. Finally, we outline challenges and
opportunities in this evolving field, including its potential to affect areas such as diagnostics and
proteomics.

DEVELOPMENT OF MULTTIPLEXED INSTRUMENTATION

Since the early 1990s, single-molecule force methods have been providing a window into detailed
properties and activities of biomolecules. Early studies investigated mechanical properties of DNA
(22,126, 127, 131), receptor-ligand interactions (40, 60, 92), and protein unfolding (107). These
studies and the many others that followed were enabled largely by advancements in technology,
particularly the ability to control force through various mechanisms and to observe microscopic
movement of tethered particles. While this review is focused on methods that use force, it is worth
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Figure 2

Overview of common geometries and force application mechanisms for single-plexed (#) and multiplexed
(&) single-molecule force techniques.

noting that major advances in single-molecule microscopy techniques were also happening around
this same time (93).

The main variations among techniques are the mechanisms by which force is applied and
by which microscopic movements are observed. By the end of the 1990s, several viable options
for force application had emerged (Figure 24), including hydrodynamic drag (19, 101, 104),
magnetism (53, 127, 131), optical forces (9), cantilevers (both atomic force microscopes and mi-
crofibers) (22, 40, 60) and pressurized membranes (92). To analyze the microscopic motions,
researchers often used high-speed electronics such as photodiodes and position-sensitive detectors
or wide-field methods like cameras.

Going into the 2000s it had become clear that optical tweezers, magnetic tweezers, and atomic
force microscopy (AFM) had emerged as the dominant tools for quantitative single-molecule force
spectroscopy. These methods excelled at probing both intramolecular and intermolecular interac-
tions, including receptor-ligand binding and other systems involving multiple distinct molecular
entities interacting under force. The three dominant methods were, however, not without limita-
tions, motivating researchers to continue exploring new technologies. One of the main shifts was
the push toward multiplexing single-molecule experiments rather than being restricted to observ-
ing a single molecule at a time. There are a few inherent challenges in expanding instrumentation
in this direction, including the difficulty of multiplexing a uniform force over a large area, decou-
pling force and distance measurements to allow a large field of observation, and achieving these
two objectives while maintaining a useful force range.

Among the three major methods of the time, only magnetic tweezers were readily capable of
multiplexing the force and were in fact the first to demonstrate multiplexing (25, 26, 106). As for
the other techniques, AFM is poorly suited for multiplexing (though adept at high-throughput se-
rial force probing) (70), while optical tweezers were multiplexed with holographic or time-sharing
methods (47, 138), though to our knowledge have not been used for multiplexed single-molecule
force measurements. Flow-based methods are generally well-suited for multiplexed force appli-
cation, and several examples of these also began to arise, including flow stretching (72) and DNA
curtains (39, 44). Some chip-based approaches with multiple DNA tethers were also developed (8,
56).

Another challenge is decoupling force and distance measurements. If the force application
method is highly localized and springlike (such as optical tweezers or AFM), then accurate
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application and measurement of forces require high-resolution positional control and detection,
respectively. This creates a practical problem in multiplexing due to the conflicting goals of
achieving high-force resolution (requiring high spatial resolution) and expanding the field of
view to observe multiple particles (lowering spatial resolution). Highly localized fields also have
difficulty maintaining a useful force range while multiplexing. In optical tweezers, multiplexing
usually involves dividing the available laser power across multiple traps, causing peak force
per trap to scale roughly inversely with the number of traps (i.e., 100 traps receive roughly
one-hundredth of the original force). Magnetic tweezers face a similar but less severe trade-off
between force range and multiplexing. High forces can be achieved with a highly localized field,
while broadening the field to enable multiplexing necessarily decreases the force range and field
uniformity with the same strength magnet.

To address these challenges, it is advantageous to employ methods capable of generating
broadly uniform force fields across large areas of observation. Among early single-molecule
methods, flow-based stretching and moderate-force magnetic tweezers inherently fit this bill by
providing relatively uniform force fields that decouple precise force measurement from stringent
positional tracking (72, 106).

In the early 2000s we recognized the need for multiplexed single-molecule tools and conceptu-
alized a new multiplexed single-molecule approach using centrifugal force. The basic idea was to
combine a microscope and a centrifuge to allow application of a uniform, calibration-free force on
many tethered particles at once while observing their individual microscopic to nanoscopic mo-
tions. Halvorsen & Wong (50) later demonstrated this idea with a proof-of-concept experiment,
performing thousands of single-molecule force experiments in parallel, and coined the instrument
the centrifuge force microscope.

Following our work, there was an expansion of other multiplexed single-molecule techniques
(Figure 2b). AFS was developed, which uses acoustic waves to produce piconewton-level forces
to many tethered beads (124). There was also work on other methods, including a nanophotonic
array (128), an optical pushing system (125), arrayed magnetic tweezers (28), and a chip-based
approach (98), among others.

In recent years, ongoing recognition of throughput as a critical factor has driven further de-
velopments in multiplexed single-molecule force spectroscopy. Existing methods have advanced
significantly, while innovative new techniques continue to emerge. The CFM has evolved with key
improvements such as integration into a benchtop centrifuge (146), wireless data transmission and
streaming (2, 57, 74), addition of fluorescence imaging (13, 85), and further dissemination through
the publishing of detailed protocols for building and using the instrument (1, 147). AFS has sim-
ilarly progressed (67), expanding into cellular microrheology and adhesion studies and becoming
commercially accessible through efforts by LUMICKS. Multiplexed magnetic tweezers have also
seen technical innovations, including addressing scaling challenges (27, 66) and introducing torque
(78). An innovative new hybrid system combines magnetic manipulation with flow-based stretch-
ing, achieving unprecedented throughput with up to 50,000 simultaneous measurements (6).

Among the four major multiplexed techniques in Figure 2, each comes with distinct advan-
tages, limitations, and quirks. Magnetic tweezers are a well-established technique with a useful
force range, moderate cost, and the unique ability to apply torque. Limitations include trade-offs
between field uniformity and maximum achievable force, the need for force calibration, and the
requirement of magnetic particles, while quirks can include unwanted bead-bead interactions
and bead magnetization variability. Flow methods are also well-established and have relatively
simple instrumentation and good buffer exchange capabilities. Limitations include the need
for microfluidics experience and potential surface interactions with beads. Quirks can include
the potential for channels to clog or leak and variations in flow velocity that can affect the
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experiments. The CFM has advantages of a uniform and calibration-free force field capable of
spanning a broad force range, compatibility with any microscopic object, low hardware cost,
and relative simplicity of use. Limitations include restricted temporal resolution, necessity for a
custom-built device, and inaccessibility of the chamber during experimentation. AFS offers an
inherently multiplexed platform capable of rapid force modulation, though it relies on nondis-
posable, expensive custom-fabricated chips and has a relatively complex force field that can be
difficult to calibrate.

Several emerging chip-based trapping and confinement approaches also have some potential
for multiplexed force spectroscopy, including dielectrophoretic tweezers (20), electrostatic trap
arrays (79), optoelectronic tweezers (145), pneumatically actuated convex lens-induced confine-
ment (12), and plasmonic tweezers (152). Recent development of the nanophotonic standing-wave
array trap has already shown promise for parallel single-molecule force spectroscopy on DNA
with performance approaching that of traditional optical tweezers (149). These emerging meth-
ods and continued development of more traditional methods continue to push the capabilities and
throughput for single-molecule experimentation.

MOLECULAR TOOLS FOR SINGLE-MOLECULE ASSAYS

Advances in multiplexed single-molecule force spectroscopy depend not only on improving in-
strumentation as described above but also on developing appropriate molecular approaches to
ensure precise nanoscale control. The reliability of each measurement depends on the specificity,
stability, and verifiability of the molecular interactions under force. Historically, early single-
molecule studies often relied on nonspecific adsorption of proteins to surfaces—a straightforward
yet less controlled approach prone to randomness and limited yields (107). High-throughput
multiplexed experiments benefit from rigorous molecular engineering through controlled sur-
face chemistry, bioconjugation techniques, and advanced molecular tethers such as programmable
DNA nanoswitches and other nanostructures.

Surface chemistry is critical yet notoriously challenging, as captured by Wolfgang Pauli’s ob-
servation that “God made the bulk; surfaces were invented by the devil” (111, p. 230). Early surface
functionalization strategies, including glass silanization protocols and self-assembled monolayers
on gold substrates, introduced defined chemical functionalities for coupling reactions (92). One
method to attach proteins to surfaces is by coating the glass coverslip with nitrocellulose (typ-
ically used in methods like Western blotting) to absorb proteins (86). Passivation strategies are
also important to minimize nonspecific interactions. These include polymeric coatings such as
polyethylene glycol or polyacrylamide, supported lipid bilayers, and the use of blocking agents
such as bovine serum albumin (BSA) or casein (39, 62, 74) (Figure 3a).

Precise spatial control of molecular placement on surfaces has significantly advanced
multiplexed single-molecule assays. Methods such as microcontact printing, bead-templated
lithography, and DNA origami-based nanoarrays have enabled the creation of defined molec-
ular patterns with enhanced density and reduced intermolecular interference (28, 117, 125)
(Figure 3b). Recently, Choi et al. (21) developed a light-guided molecular patterning method that
does not require conventional lithography equipment, improving accessibility and throughput
(Figure 3¢).

Complementing surface chemistry advancements, the diversity of bioconjugation strategies
has also improved. Noncovalent interactions such as biotin-streptavidin remain popular for
their high affinity and simplicity. Covalent conjugation techniques, such as maleimide—thiol and
N-hydroxysuccinimide-amine reactions, can provide mechanically robust attachments capable
of sustaining higher forces over extended durations (62). The advent of bioorthogonal click
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Surface preparation and molecular constructs. (#7) Common methods for passivation and functionalization of surfaces include
nitrocellulose coatings, polymeric brushes, and supported lipid bilayers. (#) Surfaces can be patterned using microcontact printing. For
example, protein-coated elastomers can be patterned through subtraction by adsorption onto a silicon template. The resulting
patterned elastomer is then used to transfer proteins onto a glass slide. () Light-guided surface patterning utilizes digital micromirror
devices to selectively illuminate and crosslink UV-sensitive compounds, creating programmable arrays of functionalized regions on a
glass slide. (d) Configurations lacking single-molecule signatures can make it difficult to discriminate genuine molecular binding from
false positives. (¢) Long polymeric (e.g., DNA) linkers can provide unique mechanical signatures due to their defined length and elastic
properties. (f) Looped linkers provide characteristic length increases upon unbinding, enabling unique molecular signatures and
repeated measurements of molecular pairs; these can be implemented using protein engineering (e.g., ReaLiSM constructs with
polypeptide linkers between binding partners) or by using DNA self-assembly techniques as in DNA nanoswitches, which provide an
addressable scaffold for attaching proteins at defined distances. (g) DNA origami techniques can be used to create rigid constructs that
reduce thermal noise, enhancing precision. Abbreviation: dsDNA, double-stranded DNA. Panel # adapted from images created in
BioRender by Ward, A. (2025), https://BioRender.com/e0k8a6v; and modeled after concepts presented in References 39, 62, 74, and
86. Panel b adapted with permission from Reference 28. Panel ¢ adapted from Reference 21. Panels d—f modeled after concepts
presented in Reference 49. Panel g modeled after concepts presented in Reference 103.

chemistries has further enhanced both the ease and the durability of covalent linkages, allowing
for stable, reproducible tethering beyond 100 pN (5, 34).

For protein coupling, lysine and cysteine labeling are commonly used, with site-specific la-
beling approaches used when a more well-defined point of attachment is needed (87). Genetically
encoded protein tags such as SNAP-tag, HaloTag, and SorTag and the SpyTag/SpyCatcher system
have extended this bioconjugation toolkit (23, 68, 89, 105). SpyTag/SpyCatcher forms a covalent
bond with high efficiency and stability and features a well-defined unfolding transition for verifica-
tion and force calibration (151). Another approach useful for engineered proteins is incorporation
of unnatural amino acids that enable placement of functional groups at almost any location in the
protein (116). For antibody labeling, commercially available reagents, such as oYo-link, specifically
target the fragment crystallizable (Fc) region.
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Molecular handles are used in single-molecule experiments to attach and control the posi-
tioning of molecules of interest and to provide a signature when pulling (Figure 3d,e). DNA has
long served as a versatile and reliable material for single-molecule force spectroscopy, owing to its
well-understood mechanical properties and the ease of bioconjugation. Early experiments using
extended DNA linkers established characteristic mechanical benchmarks, such as a well-defined
force extension curve and an overstretching plateau at ~65 pN (15, 16, 52). DNA tether technol-
ogy has steadily improved with robust attachment methods that can withstand sustained forces
up to ~150 pN, far beyond typical streptavidin-biotin limits (62). Dual-attachment strategies
with multiple anchor points enable torsionally constrained DNA handles essential for precision
magnetic torque tweezers experiments (86). The combination of modular chemical modifica-
tions, sequence-specific designs, and orthogonal attachment chemistries ensures DNA remains
a powerful, reliable tether in multiplexed force spectroscopy assays.

Engineered molecular handles can provide additional benefits, including controlled colocal-
ization of molecules through direct tethering, unique molecular signatures, and improvements
in precision. Early examples of this include polyproteins for signatures in unfolding experiments
(58) and a polypeptide linker between binding proteins that both provides a characteristic un-
binding signature and enables repeated interrogation of individual molecules (71) (Figure 3f).
Moreover, directly tethering two or more binding partners governs their spatial arrangement,
increasing local concentration through spatial confinement and precisely defining their stoichi-
ometry at the single-molecule level. Methods in DNA nanotechnology (109, 112) have simplified
construction of complex handles and extended the range of possibilities. Mechanically actuated
DNA nanoswitches incorporate reversible, force-sensitive loops, providing programmable molec-
ular signatures and enabling repeated interrogation of molecular interactions for binding and
unbinding kinetics (49, 90, 146) (Figure 3f). A slightly different design with the same concept
was later implemented with junction DNA (75). More recent developments in this area have led to
DNA nanoswitch calipers, which can achieve angstrom-level distance measurements for detailed
molecular fingerprinting (119). Rigid DNA origami beams have been used to reduce mechanical
noise and help enable complex measurements (69, 103) (Figure 3g).

Looking ahead, continued innovations in surface functionalization, bioconjugation chem-
istry, and DNA nanotechnology promise even greater experimental precision, programmability,
reliability, and throughput.

ANALYSIS OF MULTIPLEXED FORCE SPECTROSCOPY DATA

Multiplexed force spectroscopy involves both acquisition and theoretical analysis of experimental
data, typically microscopy images acquired via digital cameras. Methods generally consist of
the attachment of micron-sized colloidal particles (microspheres) to molecular tethers that are
coupled to the surfaces of microscopy slides. The microspheres typically provide the means by
which the force is being applied to the molecule(s) of interest (e.g., by drag, centrifugal force, or
magnetic field).

Particle-tracking methods have been developed to translate digital microscopy images into
physical quantities of interest such as force and distance. Several algorithms using various ap-
proaches can track the x—y position with subpixel accuracy (24, 54, 82). The z-position is more
dependent on imaging method and can be obtained with interference patterns from reflected light
(53), by forward scattering of the transmitted light (43), by video holographic microscopy (84), or
by darkfield interferometry (108). Particle positions can be determined offline after experiments
or can be analyzed in real time through the use of graphical processing units (76, 82).

Control and measurement of force can vary depending on the approach. For most methods
the measurement of the applied force requires the measurement of particle position. For tethered
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particles, fluctuations of the particle orthogonal to the direction of force application can be used
to estimate the force (136). This is typically done in magnetic tweezers by measuring particle
fluctuations at various magnet positions to estimate the force as a function of magnet position.
Likewise for AFS, force is calibrated as applied voltage on the acoustic-wave-generating piezo
plate is changed. For fluctuation-based methods, it is important to consider the effects of camera
exposure time that result in image blur and can bias force calibrations (97, 144). For flow-based
methods, a proper understanding of the geometry and flow-rate can be used to estimate the force
(123). For the CFM, the force can be calculated on the basis of particle mass and rotational speed
of the centrifuge, offering a unique advantage of calibration-free force without detailed knowledge
of the tethered particle position.

Typical experiments either hold a constant force or have a force increased in time while the po-
sitions of the particles are tracked. For experiments using DNA tethers, the particle position gives
information about the extension of the DNA, allowing for creation of a force extension profile
that serves as a single-molecule signature. Unfolding or rupture events are seen as discontinuities
in the particle position or as complete disappearance of the particle.

Analysis of force spectroscopy data is a rich and complex subject. The first theoretical treat-
ment of the effect of force on protein interactions was by Bell (11) in 1978 to describe cell—cell
adhesion. In the 1990s, theory was expanded further by Evans & Ritchie (38) to describe the
effect of dynamically changing force load on the probability of rupture. Similar models have been
used to describe atomic and molecular friction (143).

For single-bond rupture modeled as a simple two-state system, the probability of being bound,
B(#), can be described by the rate equation

dB

E = _koff (t)B(t) + kon(t)[l - B(t)]’ L.

where (1 — B(?)) is the probability of being in the ruptured state, and k. and k., are the off-rate
and on-rate of the interaction, respectively. Generally, k¢ and k,, may be functions of force and
time, but in the simplest (and common) case with effectively no rebinding, &, is zero. An early
model to describe the escape rate of a particle over an energy barrier was developed by Arrhenius,

—E

kot = Ry €Xp <KTb> . 2.

Here, Ey, is the depth of the energy barrier, k. is the attempt frequency, kg is the Boltzmann
constant, and 7'is the temperature. An applied force F decreases the depth of the energy barrier
by F - xrs, where x1s is the distance to the transition state. Now the off-rate can be described by

(11)
F
koff = kgff eXp (ﬁ) ) 3.

where %% is the zero-force off-rate and the force sensitivity of the bond, f3, is kpT/xrs.
Equation 3 is valid only for a single sharp barrier in 1D, and deviations from this can change the
force dependence of the off-rate (38). However, for many single-molecule interactions Equation 3
works surprisingly well. These two key parameters can be obtained from most force spectroscopy
experiments, and for constant force experiments Equation 3 can be used directly.

If a linear force ramp is applied, the force F in Equation 3 is a function of the loading rate,
Iy, and the time. By substituting Equation 3 into Equation 1, the most probable rupture force, f*,
can be determined by finding the maximum in the probability density of rupture (i.e., by setting
d’B/d#* = 0) (38), which yields
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Here, you can see the classic result that the most probable rupture force f* increases with the
logarithm of the loading rate. Experimentally, f* at a given loading rate can be determined by
finding the maximum in a histogram of rupture forces.

The zero-force off-rate obtained from the fit can be compared with measurements of the bulk
zero-force off-rate (e.g., by biolayer interferometry or surface plasmon resonance) as a consis-
tency check. Deviations between these two measurements could indicate that the model being
used is incorrect or oversimplified. Such an indication could be due to effects such as the forma-
tion of multiple bonds, the occurrence of rebinding, catch bond behavior, multiple pathways to
dissociation, or other complex kinetic mechanisms (29, 36, 94). Additionally, examining the full
distributions of rupture forces at different loading rates and comparing them to predicted distri-
butions from the model can act as an additional quality control of both the experiment and the
subsequent analysis.

Recent advances have broadened the analytical approaches available for single-molecule force
spectroscopy. Model-free techniques facilitate conversion of force-ramp data into equivalent
constant-force measurements, simplifying analysis and reducing assumptions inherent in tra-
ditional methods (32, 37). Additionally, nonparametric Bayesian inference has emerged as a
particularly powerful technique for analyzing single-molecule data and resolving molecular het-
erogeneity with fewer predefined state assumptions (55, 90, 135). Emerging machine learning
techniques, including neural network and simulation-based inference, are also increasingly used
to extract information such as potential energy landscapes from rupture data, expanding analytical
capabilities beyond traditional parametric methods (30, 31). Collectively, these advanced analyt-
ical tools enhance our ability to interpret single-molecule experiments, providing deeper, more
nuanced insights into complex biological mechanisms.

APPLICATIONS OF MULTIPLEXED FORCE SPECTROSCOPY

Multiplexed single-molecule methods offer a set of advantages and trade-offs distinct from those
of traditional single-molecule techniques. Multiplexing offers observation of more molecular in-
teractions at a given time, which can be used either to shorten the collection time of a certain
number of statistics or to observe variation of behavior among a population. This expanded scope
of observation tends to come at the cost of some spatial and/or temporal resolution. Most current
applications of these multiplexed methods have sought to exploit these benefits while minimiz-
ing impact of the trade-offs. In this section we discuss application examples and contextualize the
ways in which the applications benefit from multiplexing, with a focus on molecular biophysics,
including intramolecular and intermolecular interactions.

Noucleic acids biomechanics are a major area of study and have been probed with several mul-
tiplexed methods. CFM-based approaches have been used to determine force-dependent DNA
shearing (2, 57) and unzipping (146) and most recently to resolve individual base-stacking in-
teractions (3, 4) (Figure 44). These latter examples highlight some strengths of multiplexing, in
particular the collection of large amounts of data on minutes-to-hours timescales that would be
impractical with traditional single-plexed methods. Multiplexed magnetic tweezers have also been
used to investigate DNA biomechanics such as force—extension behavior (28, 106) and torsional
stiffness (78).

Noucleic acid interactions with proteins such as enzymes and other cofactors have also been an
area of interest. Flow-based approaches and multiplexed magnetic tweezers have been used heavily
in these areas (Figure 45). One of the earliest studies was of exonuclease activity in converting
double-stranded DNA (dsDNA) to single-stranded DNA by observing changes in tether extension
(137). Similar experimental setups by the same laboratory have been used to investigate various
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Figure 4 (Figure appears on preceding page)

Diverse applications of multiplexed force spectroscopy. (#) Measurement of base-stacking interactions in DNA using the CEM, with
representative data comparing A|C (adenine stacked with cytosine) and A|T (adenine stacked with thymine) pairs. (#) Enzymatic
processing of nucleic acids using flow to measure primer extension with 30 nM and 5 nM of enzyme (/eft) or magnetic tweezers to
investigate pausing during primer extension (right). (c) Resolving molecular heterogeneity in antibody interactions using the CFM
combined with DNA nanoswitches for repeated interrogation of individual binding pairs. (d) Forced unfolding of VWF protein using
magnetic tweezers. (¢) Sensing of microRINAs using magnetic tweezers and cyclic hairpin unfolding. (f) Studies of cellular adhesion
using AFS (left) and CFM (right). Abbreviations: AFS, acoustic force spectroscopy; CFM, centrifuge force microscope; RdRp,
RINA-dependent RNA polymerase; VWE, von Willebrand factor. Panel # adapted from Reference 4 (CC BY 4.0). Panel 4, /eft adapted
with permission from Reference 134; panel b, right adapted with permission from Reference 63. Panel ¢ adapted from Reference 90
(CC BY-NC-ND 4.0). Panel d adapted with permission from Reference 88 (CC BY-NC-ND 4.0). Panel ¢ adapted with permission
from Reference 148 (CC BY-NC 4.0). Panel f, /eft adapted with permission from Reference 129 (CC BY-NC-SA 3.0); panel f; right
adapted from Reference 13.
aspects of DNA replication (51, 83, 134). Other laboratories have used multiplexed flow assays to
investigate dynamics and mechanics of DNA repair (64, 99), proofreading by polymerases (100),
and replication termination (35). Multiplexed magnetic tweezers have been used in several studies
of viral RNA-dependent RNA polymerases (63, 78, 80, 114). An interesting combination of flow
and magnetic tweezers was also recently introduced and used to investigate drug-induced dsDNA
breaks with topoisomerases (6). AFS has also been used to measure DNA mechanics with and
without RecA protein (124).

Intramolecular and intermolecular protein interactions have also been extensively studied with
various multiplexed single-molecule methods (Figure 4c,d). For example, AFS has been used
to measure protein—protein interactions (142), as well as protein—carbohydrate interactions (48).
Multiplexed magnetic tweezers have been applied to study protein unfolding dynamics in von
Willebrand factor (VWF) (88), while multiplexed flow-based assays have characterized tension-
dependent interactions involving VWE, such as its interaction with platelets (42, 65) and its
self-association (41). Additionally, multiplexed assays using the CFM have facilitated studies of
single-molecule protein proteolysis (73). Other notable examples include investigations of the
mechanical stability of SARS-CoV-2 with its cellular receptor (10). Recent efforts from our
laboratory combined multiplexed force measurements via the CFM, repeated interrogation of
individual molecular interactions using DNA nanoswitches, and nonparametric Bayesian infer-
ence to characterize molecular heterogeneity of binding strength within antibody populations
90).

Single-molecule biomolecular sensing can also be enabled by multiplexed methods, using, for
example, molecular tethers that change their mechanical pulling signature upon binding to extrin-
sic biomolecules (91). A recent study applied this idea to multiplexed magnetic tweezers, showing
mutation-sensitive detection of nucleic acids, including microRNAs and viral RNAs by repeated
pulling of an array of single-molecule hairpins (148) (Figure 4e). To address situations where the
molecules of interest are not known a priori, Shrestha et al. (118-120) have developed a mechanical
fingerprinting approach to measure multiple intramolecular distances within single biomolecular
complexes and have demonstrated this using multiplexed methods. As discussed in the next section,
this approach could have significant impact on the emerging field of single-molecule proteomics.

Beyond individual molecules, some of these tools have been used for measurements of larger
structures, including colloids and cells. Such measurements benefit from multiplexed force meth-
ods, especially using the CFM or AFS, both of which can directly apply physiologically relevant
forces without specialized probes (Figure 4f). One such application used the CFM to measure
the physical interactions between colloids and surfaces in the nanonewton range (85). AFS has
investigated cell adhesion forces between CD4 and fibronectin (67), mechanical stretching of red
blood cells (130), endothelial cell mechanics under shear stress (122), microrheology of cells (95),
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and various cells and biomaterials (14). A recent CFM study also investigated immune cell avidity
with T cell and B cell lines (13).

Collectively, these examples illustrate how multiplexed single-molecule force spectroscopy en-
ables detailed interrogation of biological systems at scale, revealing insights otherwise inaccessible.
Yet substantial challenges—and corresponding opportunities—remain as the field expands toward
broader biological and clinical applications.

CHALLENGES AND OPPORTUNITIES

Significant progress has been made in multiplexed single-molecule assays, yet opportunities for
further methodological improvement remain. Here, we outline key areas for technological ad-
vancement and highlight emerging biological and clinical applications that can both benefit from
multiplexed assays and motivate continued innovation.

Major technical challenges remain in molecular preparation, data analysis, and automation.
Instrumentation for multiplexing single-molecule experiments has progressed rapidly, but many
experimental and analytical approaches initially developed for single-plexed methods have not
kept pace. Scaling up requires improved efficiency and control in molecular tethering to reliably
form large numbers of single-molecule tethers, development of confirmatory molecular tethers
(49, 71), and advanced patterning approaches (21) toward precisely localizing and verifying distinct
molecular interactions. Data analysis similarly poses substantial challenges due to increasingly
large datasets and the unique types of data in different experiments. Although robust methods for
data analysis already exist, workflows within and between laboratories are often still fragmented
across different platforms (e.g., MATLAB, Python, C++, LabVIEW) and different programs
or subroutines. Greater standardization of analysis tools and software, similar to advances in
genomics, could strongly benefit the field. In addition to multiplexing, automation offers a comple-
mentary route to higher throughput. Near-term opportunities include improved software-driven
automation, such as more general and flexible control scripts; fully automated data acquisition
allowing for unattended operation; and reproducible, largely hands-off data analysis pipelines. In-
tegration of software control with specialized hardware, including automated fluid handling and
fast scanning stages, could further improve experimental efficiency. Commercial implementations,
such as the LUMICKS optical tweezers platform, illustrate how hardware—software integration
can streamline workflows, enhancing throughput for a given measurement modality. Further au-
tomation across sample preparation, data collection, and computational analysis could maximize
the throughput and reproducibility of existing approaches.

Another key technological challenge and opportunity is increasing molecular diversity. Cur-
rent multiplexed methods often focus on collecting extensive statistics from many copies of a single
molecular species, but broader biological insights could be gained by simultaneously measuring in-
teractions across diverse molecular species, potentially enabling omics-scale single-molecule force
studies. Achieving this goal requires balancing complex trade-offs between spatial and tempo-
ral resolution, throughput, force range, and experimental costs. Technologies such as engineered
tethers with integrated barcodes (120) and molecular patterning approaches capable of creating
spatially indexed molecular arrays (21) will likely be critical for increasing multiplexing diver-
sity. Another promising route comes from sequencing-based methods such as MUSCLE (7)
and SPARKX (115), which repurpose Illumina sequencing platforms to index thousands of dis-
tinct species and correlate single-molecule behavior with sequencing information. Adapting this
sequence-derived spatial indexing approach to force spectroscopy could substantially enhance
molecular diversity by enabling parallel force measurements of sequence-barcoded molecular
interactions.
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Clinical sample analysis presents another substantial opportunity for single-molecule methods,
though accompanied by challenges of sample complexity, heterogeneity, and limited abundance.
Recent developments, such as DNA nanoswitch calipers, offer single-molecule mechanical fin-
gerprinting suited for single-molecule proteomics, including protein identification, geometric
analysis, and post-translational modification mapping (119). A few multiplexed single-molecule
biomolecular sensing techniques, some of which are using force-based approaches, have begun
demonstrating biological detection directly from clinical samples (148). Collectively, applying
multiplexed single-molecule approaches to clinical samples could help uncover novel biomarkers
for disease, enable sensitive diagnostics, and aid in drug discovery.

Another compelling opportunity is to combine multiplexed force spectroscopy with com-
plementary measurement modalities to increase the depth of information obtained from
single-molecule assays. Single-molecule fluorescence integration is now relatively common in op-
tical tweezers setups (18, 59, 81), magnetic tweezers (61, 121), and commercially available systems
such as the LUMICKS C-Trap. However, its adoption remains limited in highly multiplexed force
assays, aside from specialized flow-based examples (42, 46). More broadly integrating optical spec-
troscopy methods, including fluorescence and fluorescence resonance energy transfer (FRET),
into multiplexed platforms, such as magnetic tweezers, centrifugal force microscopy (13, 85), and
AFS, could substantially enrich our ability to dissect molecular heterogeneity by simultaneously
tracking force, conformation, and potentially chemical state.

Perhaps one of the most interesting opportunities from recent developments is to enable mul-
tiplexed force spectroscopy with engineered nanostructures by using the structure to measure
or apply force. DNA nanotechnology-based tools such as tension gauge tethers enable scalable
mapping of forces at multiple cell-attachment sites (121, 141). Programmable DNA structures
capable of applying forces to single molecules include early loop-based force actuators (153) and
autonomous DNA origami force clamps (77, 96).

Multiplexed force spectroscopy can also open new possibilities for biological applications; ex-
tending force studies to living cells is one compelling direction. Next-generation CFM platforms
recently enabled high-throughput quantification of cell-cell adhesion and avidity (13), and various
AFS studies have probed cells as well (67, 129, 122, 95). Genetically encoded FRET-based ten-
sion sensors have already enabled in situ measurements of molecular-scale forces inside living cells
(45). Integrating these sensors with advances in fluorescence microscopy, such as high-speed lattice
light-sheet imaging, could further improve multiplexing and enable mapping of force propagation
across cellular structures. Combining such measurement with active mechanical control inside
cells using engineered, optically controllable molecular motors (110) could enable sophisticated,
closed-loop experiments to probe cellular mechanotransduction pathways.

Finally, democratizing multiplexed single-molecule force spectroscopy is essential for broad-
ening its impact and enabling a wider range of meaningful applications. Increasing accessibility
through open-source, low-cost platforms such as the CFM (1, 50, 146, 147) or commercially avail-
able systems can accelerate its adoption across biological and biomedical research communities.
Together, increased accessibility, new capabilities, and higher throughput will enable more re-
searchers to address broader biological questions, unlocking discoveries that fully harness the
potential of single-molecule methods.
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